For a full list of publications, please check my Google Scholar page.
I believe scientific literature should be openly accessible. If you cannot access any of these works, please contact me (gilardonicm (at) cbpf.br).
Where present, * denotes equal contributions
Optically active defects in solids can function as an interface between optical and spin degrees of freedom, providing a building block for quantum communication and sensing technologies. In my research, I have investigated optically active defects in both traditional semiconductors (silicon carbide, SiC) and novel 2D materials (hexagonal boron nitride, hBN), with a particular interest in understanding their microscopic structures in order to engineer new routes to controlling them.
Gilardoni, C. M.*, Barker, S. E.*, Curtin, C. L., Fraser, S. A., Powell, O., Lewis, D. K., ... & Stern, H. L. (2025). A single spin in hexagonal boron nitride for vectorial quantum magnetometry. Nature Communications 16, 4947.
Stern, H. L.*, M. Gilardoni, C.*, Gu, Q., Eizagirre Barker, S., Powell, O. F., Deng, X., ... & Atatüre, M. (2024). A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nature Materials, 23, 1379.
Hendriks, J.*, Gilardoni, C. M.*, Adambukulam, C., Laucht, A., & van der Wal, C. H. (2022). Coherent spin dynamics of hyperfine-coupled vanadium impurities in silicon carbide. arXiv preprint arXiv:2210.09942.
Gilardoni, C. M., Ion, I., Hendriks, F., Trupke, M., & van der Wal, C. H. (2021). Hyperfine-mediated transitions between electronic spin-1/2 levels of transition metal defects in SiC. New Journal of Physics, 23, 083010.
Gilardoni, C. M.*, Bosma, T.*, Van Hien, D., Hendriks, F., Magnusson, B., Ellison, A., ... & van der Wal, C. H. (2020). Spin-relaxation times exceeding seconds for color centers with strong spin–orbit coupling in SiC. New Journal of Physics, 22, 103051.
Bosma, T., Lof, G. J., Gilardoni, C. M., Zwier, O. V., Hendriks, F., Magnusson, B., ... & van der Wal, C. H. (2018). Identification and tunable optical coherent control of transition-metal spins in silicon carbide. npj Quantum Information, 4, 48.
Transition metal dichalcogenides are 2D semiconductors where optical, spin and valley degrees of freedom are connected. My research has delved into the role of spatial and time-reversal symmetry in restricting possible spin scattering mechanisms in these materials, as well as the characterization of excitonic and defect-related states in (chemically) engineered heterostructures from these materials.
Alexeev, E. M., Purser, C. M., Gilardoni, C. M., Kerfoot, J., Chen, H., Cadore, A. R., ... & Ferrari, A. C. (2024). Nature of long-lived moiré interlayer excitons in electrically tunable MoS2/MoSe2 heterobilayers. Nano Letters, 24, 11232.
Sayyad, M., Kopaczek, J., Gilardoni, C. M., Chen, W., Xiong, Y., Yang, S., ... & Tongay, S. A. (2024). The Defects Genome of Janus Transition Metal Dichalcogenides. Advanced Materials, 36, 2403583
Gilardoni, C. M., Hendriks, F., van der Wal, C. H., & Guimarães, M. H. (2021). Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides. Physical Review B, 103, 115410.